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Problem and Research Objectives

Ground water is the primary source of drinking water for 61 percent of Louisiana’s residents.
Irrigation withdrawal is accounted for 37 percent of the total ground water withdrawal (Sargent,
2007). Ground water has been a significant factor to the continuation of Louisiana economic
development. However, rapid growth in population and industry has increased ground water
demand and resulted in saltwater intrusion to many freshwater aquifers (Tomaszewski, 1996). In
addition, recent drought in Louisiana has escalated ground water withdrawal and accelerated the
saltwater encroachment (Bohr, 2003). To protect the ground water, Louisiana legislature Act 446
(2001) declares: ground water resource is a matter of public interest. Ground water must be
managed, protected, and regulated in the best interests of all the citizens of the state. Act 49
(2003) requires the ground water resource management program to meet the goal of long-term
sustainability of the state’s ground water aquifers and to sustain the economic welfare of the
state’s citizens.

For long-term economic growth, effective planning and management of ground water
sustainability become an urgent task. Louisiana needs a scientific, systematic management plan
to protect ground water from further saltwater intrusion without causing environmental
detriment.

In this project, we propose a multimodel approach to study the groundwater head prediction
under model uncertainty for the “1,500-foot” sand aquifer in the Baton Rouge area. The study
area, shown in Figure 1, extends over about 300 km* and includes the major part of the Baton
Rouge metropolitan area. Due to downthrow on the south side of the Baton Rouge Fault, the
“1,500-foot” sand (north) connects to the “1,200-foot” sand (south). The fault acts as a conduit-
barrier (Bense and Person, 2006) and allows ground water to cross the fault. South of the fault,
the aquifer contains mostly saltwater, which comes from dissolved brine solution from two
nearby salt domes, the St. Gabriel salt dome and Darrow salt dome (Bray and Hanor, 1990).
North of the fault, the aquifers store excellent quality and quantity of water for the public and
industry (Sargent, 2002). Heavy pumping has caused this aquifer to decline by as much as 90 m
since the 1940s.



91°10 91°05” 91° 00’

X 1 1 1
EB-859 ) ER 623
Modeling Area ™
0 O<EB652
o o5 EB-995
s EB919668
2 © EB6s6, w0t
Ed il OEB-905
8 It © EB-928
e EB-722
=_| ©  xEB-334 xEB-926
28| © EB-587 EB-S10 OEB-392 )
Es| o EB-657/ EB-927 2
“°| 2 EB7sI EB-771 EB-873 =4
B, EB-§74 éEB-4I3 X OEB-961 P
i EB-444 oo//EE%?go 177A X EB-1004 £
- [ g EB<]77 O—EB-792A , <
g O<EB-918 OEB-1016B
) -
Py
2 & OEB-1295A
S’ O Observation well
® E-log sample location j—

Figure 1: The “1500-foot” sand of the Baton Rouge area, Louisiana.

In the literature, the saltwater intrusion management model is commonly based on one
parameterization method for distributed aquifer parameters in one simulation model. However,
due to data scarcity and lack of hydrogeological information, the developed conceptual model
and the chosen parameterization method are not unique. We are often overconfident in the
management results from one method and one model, and neglect the impact of model
uncertainty in the management decision. Detrimental results could be caused by overlooking the
model uncertainty.

The goal of the project is to predict groundwater head distribution in the “1,500-foot” sand aquifer
under the consideration of model uncertainty. Model uncertainty contains model structure
uncertainty and model parameter uncertainty.

Objectives
To achieve the project goal, we propose the following specific objectives:

Objective 1~ Develop a generalized parameterization method

The project will improve the hydraulic conductivity estimation by extending the generalized
parameterization (GP) method (Tsai and Yeh, 2004; Tsai, 2006) to fuse different types of data.
The GP method will be able to integrate different parameterization methods under the
geostatistical framework. The conditional estimate and conditional variance of the GP method
will be formulated to assess the uncertainty of the hydraulic conductivity estimation.

Objective 2 Develop a multimodel approach

The project will adopt a Bayesian model averaging (BMA) method (Draper, 1995; Hoeting et al.,
1999) to integrate multiple groundwater flow models and multiple parameterization methods for
prediction of groundwater head. Specifically, we will consider multiple GP methods for
parameterizing the hydraulic conductivity field. We will also consider the uncertainty in
boundary conditions to develop a number of ground water models.

Methodology



(1) Generalized Parameterization (GP)
A generalized parameterization (GP) method is proposed to estimate hydraulic conductivity:

7ep (XO |X1,X2,~",X",):Zj’:1 ¢/ (ﬂ/_ﬂk(xo))ﬁj—i_ﬂk(xo) (1)
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where S, are the data weighting coefficients bounded between 0 and 1. The GP integrates an

interpolation method and a zonation method honoring the sampled data. Consider that 7 is a
random field in a region (€2), the sampled data 7z, are taken at locations X, j=1,2,---,m. The

sample data 7; can be any form of hydraulic conductivity values, e.g., logarithmic values of
hydraulic conductivity. Using the GP methods in equation (1), one can obtain an estimate of a

zonal structure 7, (X, X, )={7, | X, €Q,}, a smooth distribution using an interpolation

methOd T, Interpolation

(X [X,X,,5,X,,) = ZTZ] ¢z, , or a conditional estimate of a mixed
distribution by considering different values of data weighting coefficients B, = { BB ﬁm} to

the m sample sites. In this way, the GP method greatly improves parameterization flexibility.

(2) Hydraulic Conductivity Estimation and Uncertainty using GP and Bayesian Model
Averaging (BMA)
If a set of possible zonal structures Q ={Q" Q@ ... and a set of interpolation methods

F ={$",¢?,...} are considered for estimating hydraulic conductivity, combinations of many
zonal structures and interpolation methods pose a multi-parameterization (multimethod) problem
that involves many GP methods @ =QxF ={#";p=1,2,---} to describe the hydraulic

conductivity for the region. To cope with the multimethod problem, a Bayesian model averaging
(BMA) approach is adopted to analyze the multiple GP methods. BMA uses the Bayes rule to
assess prediction uncertainty using a set of models (Draper, 1995; Hoeting et al., 1999). Let

Pr(n | D,@) be the conditional probability of the hydraulic conductivity given data and multiple

parameterization methods. The Bayes rule (Draper, 1995) has
— (p) (p)
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Pr(n | D,6" )) represents the conditional probability of hydraulic conductivity given data and a
GP method. Pr(H(") |D) is the posterior probability of a GP method. According to the Bayes
rule, Pr(@“’) |D)is

(p) — (p) (p) (P) (p)
Pr(6|D)=Pr(D|6" )Pr (0 )/prr(me )Pr(6) (3)
where Pr(D |0 )) is the likelihood probability of a GP method. Pr(ﬁ”’ )) is the prior probability

of a GP method and ZpPr(H(" ) ) =1. One can evaluate estimation uncertainty by looking at the
conditional expectation of the parameter heterogeneity (x| D,®) (Schweppe, 1973)

_ (p) (P)
E[x|D,0]=3" E[x|D,0" |Pr(6"|D) (4)

and the conditional covariance of the parameter heterogeneity (7| D,®)
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E[n | D, 49(’))} and Cov[n | D, 0(”)] are the conditional expectation and conditional covariance

of hydraulic conductivity given a GP method, respectively.

(3) Groundwater Head Prediction and Uncertainty using GP and BMA
Similarly, one can determine a set of groundwater models M = {M @ g = 1,2,---} (multimodel)

from limited data to interpret groundwater flow process. However, each groundwater flow model
embeds uncertain hydraulic conductivity estimates, which is described by multiple GP methods.
The project extends the BMA to interpret the probability of groundwater head prediction,

Pr(u|D,6, M), with multiple simulation models and multiple GP methods:
Pr(u|D,0,.M)= ZquPr(u | DM, 6% ) Pr (6" | D,M)Pr(M'” | D) (6)

Pr(u | D,M (‘”,0(’”) is the conditional probability of groundwater head prediction given data, a

simulation model and a GP method. Pr(H(p '|D,M (Q)) is the posterior model probability based
on data and a model. By the Bayes theorem, we have

(p) (@)) — (p) (q) () (9) () (9) (p) (q)
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where Pr(D|9(p),M (‘1)) i1s the likelihood probability of a GP method given data and a

simulation model. Pr(H(”) | M (")) is the prior method probability. A prior probability

subjectively depends on the modelers’ belief. A method should receive higher likelihood
probability Pr(D |6, M (")) if it produces better results given a simulation model.

One can obtain the conditional expectation and covariance of the model output with respect to
multimodel and multimethod as follows:
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Principal Findings and Significance (derived from Li and Tsai, WRR, 45, W09403, 2009)

(1) Head Predictions in the “1,500-foot” sand of the Baton Rouge area, Louisiana

The proposed methodology was applied to predict the groundwater heads of the “1,500-foot”
sand of the Baton Rouge area in Louisiana. The “1,500-foot” sand belongs to the Evangeline
equivalent aquifer system, which is part of the Southern Hills aquifer system (Griffith, 2003). It
is one of the ten freshwater aquifers that were originally named according to their general depth




in the Baton Rouge industrial district (Meyer and Turcan, 1955). Precipitation originated in
Mississippi is the primary source of recharge of freshwater to the aquifer system.

The study area shown in Figure 1 extends about 300 km? and includes a major part of the Baton
Rouge metropolitan area. Due to throw-down at the south side of the Baton Rouge fault, the
“1,500-foot” sand (north) connects to the “1,200-foot” sand (south). The Baton Rouge fault
restricts northward flow of groundwater from the south of the fault; 706 observed groundwater
heads were obtained from 18 head boreholes, and electrical resistivity was measured at 20
electrical logs. The pumping rates from 16 pumping wells were recorded from January 1, 1990 to
December 31, 2004. Previous studies reported small variation in specific storage (Huntzinger et
al., 1985; Griftith, 2003). A constant specific storage, 2.2 x 10° m™ is considered for the “1,500-
foot” sand. A time-varied constant head boundary condition was applied to all boundaries of the
study area (Figure 1). This study adopted the groundwater model developed by Tsai and Li

(2008). The head variances range between 0.2126 and 237 m” .

The Baton Rouge fault is rarely surveyed in this area and it can form pathways that connect
aquifers at different depths due to the orientation and mode of fractures (Anderson and Fairley,
2008). Hydraulic anisotropy in the fault can result from a variety of mechanisms, including clay-
smearing, drag of sand, grain re-orientation, and vertical segmentation of the fault plane (Bense
and Person, 2006). Many studies (Chester et al., 1993; Bredehoeft, 1997; Salve and Oldenburg,
2001; Fairley et al., 2003) have been conducted to understand permeability in and near the fault
zone and have shown that determination of the fault permeability still remains a formidable task.
For the purpose of methodology implementation, the Baton Rouge fault is considered to be
isotropic and homogeneous, where the hydraulic characteristic of the Baton Rouge fault was
estimated to be 5.19x107*/day (Tsai and Li, 2008). Because the true HC value of the Baton
Rouge fault is unknown, we consider three groundwater model structures: the impermeable-fault

model MV with HC=0/day, the low-permeable-fault model M® with HC=5.19x107" /day, and

the no-fault model M with HC=9x10°/day. The very high HC value ensures no influence on
flows crossing the horizontal flow barriers for the no-fault model.

To estimate the hydraulic conductivity distribution from the 20 resistivity data, the Archie law
(Archie 1942) was adopted to interpret the formation factor into porosity. Typically, the pore
geometry coefficient varies between 0.62 and 2.45, and the value of cementation factor has a
range between 1.08 and 2.15, depending on the formation. By fitting to the observation data, the
pore geometry coefficient and the cementation factor for the “1,500-foot” sand were estimated at
0.8 and 2.04, respectively. The effective grain size is 0.22 mm (Meyer and Turcan, 1955) and the
groundwater temperature is 30°C. The same seven grain-size based methods in Tsai and Li
(2008) were used to convert porosity into hydraulic conductivity. The generalized
parameterization (GP) that combines the Voronoi tessellation (VT) and the ordinary kriging
(OK) was adopted to obtain the hydraulic conductivity distribution. A variance window with a
scaling factor o = 0.08 was applied, where s, =6, s, =2, and o, =37.6.

(2) BMA Results
The BMA was applied to each groundwater model, where the averaged head values over the
seven estimation methods were obtained. The datum of the groundwater heads is NGVD 29. The




regression coefficient of the low-permeable-fault model (R* =0.9033) is slightly better than that
of impermeable-fault model (R* =0.8916). The no-fault model (R”> =0.2038) does not fit the
observed data well. The no-fault model should not be considered because it cannot produce
groundwater heads close to the observed heads. Using the variance window, the impermeable-
fault model has a weight of 32.99% and the low-permeable-fault model has a weight of 67.01%.
This indicates that the fault permeability is low. Both models favor the Kozeny-Carman method
and the Sauerbrei method. The best combination is the Kozeny-Carman method with the low-
permeable-fault model, which has a combined weight of 38.20%. The Kruger method and the
Zunker method gain very small weights in the impermeable-fault model (1.61% and 1.51%,
respectively) and slightly higher weights in the low-permeable fault model (6.29% and 7.38%,
respectively). The Slichter method, the Terzaghi method, and the Zamarin method gain zero
weight in both groundwater models.

Comparisons of calculated heads against the observed heads at EB-918, using the seven methods
and BMA over methods in the low-permeable-fault model, are made. The Slichter method, the
Terzaghi method, and the Zamarin method are far from one standard deviation from the BMA
estimation. This demonstrates that the variance window is a valid model selection criterion for
the purpose of BMA. Head uncertainty using the BMA is higher than individual methods for EB-
918 at the observation space. This is because the BMA additionally considers the between-
method variance and between-model variances. Using a single method may underestimate
uncertainty. We also want to emphasize that due to intrinsic characteristics in individual
methods, the best method may not necessarily have the smallest estimated head standard
deviations. The Slichter method has a zero method weight, but has lower head standard
deviations than the Kozeny-Carman method. Our point is that the estimated head standard
deviation is a measure of uncertainty based on the selected method, but is not a measure of
estimation accuracy for the method. Moreover, the head standard deviations increase over time

because the parameter uncertainty propagates and accumulates to increase the head uncertainty.
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Figure 2: Comparisons of head prediction on 31 December 2019 by the BMA over models and methods and by the
low-permeable-fault model with the Kozeny-Carman method and the Sauerbrei method.

Without the BMA analysis, one may conclude that the head uncertainty based on a wide range of
methods is much larger than that from individual methods. This confirms the observation in
Carrera and Neuman (1986) that the uncertainty from estimation method selection is much larger



than the uncertainty from parameter estimation. However, with the BMA analysis, the head
uncertainty due to method uncertainty is similar to that of individual methods.

(3) Head Predictions and Uncertainty with Multimodel and Multimethod

The groundwater heads for the next 15 years (from 1/1/2005 to 12/31/2019) were predicted by
keeping the same head boundary conditions at the last stress period (December 2004). The time-
varied monthly pumping rates were fixed to the average pumping rates of the last three years
(2002-2004). Figure 2 shows the head prediction on 12/31/2019 using the BMA with the
variance window against the head predictions using the low-permeable model with the Kozeny-
Carman method and with the Sauerbrei method.

The BMA prediction variance of heads includes the within variance (Figure 3a), the between-
method variance (Figure 3b), and the between-model variance (Figure 3c). The total BMA
variance shown in Figure 3d is the sum of these three variances. Although calculated heads can
be significantly different when using different simulation models and estimation methods, the
between-method and between-model head prediction variances are fairly small, and the within
variance dominates the total BMA prediction variance. The small between-method variance
arises from the high method weight of the Kozeny-Carman method, which has a weight of
73.48% in the impermeable-fault model and 57.01% in the low-permeable-fault model.
However, the low-permeable fault model, with 67.01% of the total model weight, does not
dominate. Hence, the small between-model variance indicates similar head predictions by the
two groundwater models.
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Figure 3: Head prediction variance (m?) distributions: (a) within variance, (b) between-method variance, (3)
between-model variance, and (d) total variance.



We note that small between-model variance does not suggest unimportance of the hydraulic
characteristic of the fault to head predictions. It cannot be used to judge the sensitivity of faults
to groundwater heads. Small between-model variance simply indicates that good models produce
similar predictions close to the expectation of the BMA predictions. Bad models have very little
influence on the head prediction because their model weights are very small while head
predictions of bad models are far from the expectation of the BMA predictions. There is no
direct implication that the hydraulic characteristic of the fault is relatively unimportant to head
predictions.

The within variance overwhelms the between-model and between-method variances, indicating
large uncertainty propagation from hydraulic conductivity estimation to head prediction.
Specially, the head prediction variance at the southeast area is large because of less hydraulic
conductivity samples and head observation data. To reduce head prediction uncertainty, future
sampling on hydraulic conductivity and groundwater head in these areas is necessary. Moreover,
large head prediction variance near the fault indicates the need for a better understanding of the
fault characteristics.
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