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SYNOPSIS

Problem and Research Objectives

Due to the complexity of real aquifer systems and insufficiency of available data, we often
encounter the situation that several simulation models agree satisfactorily to the same
observation data. Nevertheless, these models can differ substantially from each other in model
structure and in embedded model parameters. They can lead to substantially different
predictions. This is the non-uniqueness problem in groundwater inverse modeling [Yeh, 1986].
Selection of a single "best" model is not sufficient when several competitive models are
available. To take into consideration in model uncertainty, Bayesian model averaging (BMA)
[Hoeting et al., 1999] was introduced to draw inferences (predictions) from multiple models. In
BMA, model importance is represented by the posterior model probability, which is evaluated by
the likelihood function and the prior model probability. The total prediction variance in BMA
considers the within-model variance and the between-model variance. Evaluation of the
likelihood function can be achieved by either the Monte Carlo (MC) simulation methods
[Madigan and Raftery, 1994] or the Laplace approximation such that the model weights are
calculated in terms of the Bayesian information criterion (BIC) [Raftery, 1995]. The latter
approach is especially beneficial in groundwater modeling because the MC approach is usually
too expensive for large-scale real-world groundwater models.

The objective of this study is to use the BMA technique to develop a Bayesian multi-model
multi-parameterization (BMMMP) scheme to predict groundwater heads and evaluate head
prediction uncertainty. In this study, we consider the uncertainty in the groundwater model as
well as the uncertainty in the parameterization method to investigate the propagation of these
uncertainties to the uncertainty of groundwater head predictions in the “1,500-foot” sand in East
Baton Rouge Parish, Louisiana. The “1,500-foot” sand contains the Baton Rouge Fault, a distinct
geological structure that restricts groundwater flow through the fault. According to different
considerations on the Baton Rouge Fault characteristics, we develop three conceptual
groundwater models: one model with a leaky fault, one model with an impermeable fault, and
one model without a fault. For each groundwater model, we consider seven grain-size methods to
estimate hydraulic conductivity at electrical resistivity-log sites. Different hydraulic conductivity
distribution is then obtained through the GP method that combines the ordinary kriging (OK)
method and the Voronoi tessellation (VT) method [Tsai 2006].

Methodology
(1) Bayesian Multi-Model Multi-Parameterization (BMMMP) Method

Consider a set of groundwater models denoted as {M P p=1,2, } , for groundwater

simulation. In each groundwater model, M'” | a set of parameterization methods for estimating
hydraulic conductivity is denoted as {G(qp 'iq=1,2, } , where 6((]") represents the
parameterization method in groundwater model M‘” . According to the law of total probability,

the posterior probability of groundwater head predictions for given data D, parameterization
methods, and simulation models is

Pr(h|D)=E,[E,[Pr(hM",0" D)]|

(1)
= ZpzqPI‘(h|M(P)’H;P)’D)PI‘(HI(IP) | M(P) ,D)PI’(M(p) | D)



where Pr(h|M" ),G(qp ),D) is the posterior probability of groundwater head predictions for given
data, groundwater model M ‘”’ and parameterization method 6'”. Pr(O(‘” |M(”),D) is the
posterior method probability of parameterization method G(q” ) for given data and groundwater

model M ‘7). Pr(e“’) | M”’),D) also represents the method weight. Consider the equal prior

method probability. The posterior method probability can be approximated using the Bayesian
information criterion (BIC):

exp [—% BIC(qp) ]

Pr(6” |MP, D)= 2
( | ) Zjexp[—%BIC(j”)J @)

where

BIC{ ==2InPr(D|M”,0( B )+ m? Inn (3)

where ﬁ;”) are the maximum-likelihood (ML) estimated parameters in the method 07, m” is
the number of the parameters ﬁi]p) , and n is the number of data D. Pr(D | M‘”,G‘qp),ﬁ(qp)) is the
likelihood function value of the heads for given model M‘?’, method O(qp ' Considering the equal

prior model probability, the posterior model probability Pr(M”’) | D) given the data is calculated

through the Bayes rule:
Pr(D|M?)

> Pr(D|M?)

where Pr(DM?) = zqPr(D | M”’),G(‘”)Pr(e“p | M ) Pr(M”’) | D) also represents the model

Pr(M?|D)= )

weight. Using the law of total expectation, the means of the groundwater head predictions are
E(h|D)= 5\4[59[5(1”1\4@)79(@7]))}}

)
= ZquE(h | M””,O“”,D)Pr(e(‘” | M(p),D)PI‘<M(p) | D)
The total covariances of the groundwater head predictions are
Cov(h|D)=E,E,| Cov[h|M",0,D][+E,Cov,| E[h|M",0,D]]
(6)

+Cov,E, [E[h | M(P),G(‘”,Dﬂ
The means of heads can be approximated by E [h |MP 79((;)’])] = h(n(c’}), q). Using the

linearization approach [Dettinger and Wilson, 1981; Tiedeman et al., 2003], the covariance
matrix of heads is Cov[h|M”,6%.D, =% [Covi), |[J% ] . where J, =ab/om s the

Jacobian matrix and [Cov | is the covariance matrix when the GP method is used.



(2) Methodology Application to “1,500-foot” Sand, Baton Rouge, Louisiana
The methodology is applied to groundwater head prediction on January 1, 2020 in the “1,500-
foot” sand in East Baton Rouge (EBR) Parish, Louisiana. The study area is shown in Figure 1.
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Figure 1. The study area: the “1,500-foot” sand.

The “1,500-foot” sand is one of the sand aquifers in Baton Rouge and is the major freshwater
source to the public. The Baton Rouge Fault historically restricted saltwater south of the fault
moving northward. However, groundwater levels in the East Baton Rouge Parish have declined
by as much as 91 meters since the 1940’s. The large cone of depression in the northern area of
the Baton Rouge Fault has induced saltwater encroachment across the fault toward the pumping
centers. In this study, we focus on groundwater head prediction using the BMMMP scheme. The
study area in Figure 1 extends about 300 km” and includes a major part of the Baton Rouge
metropolitan area.

To develop the regional groundwater model, we collected 706 groundwater observation records
from 18 observation wells (see Figure. 1) for the period from January 1990 to December 2004
(15 years) from the USGS National Water Information System website. We also collected 21
clectrical log data (see Figure 1) to determine the hydraulic conductivity and the aquifer
thickness. The Capital Area Ground Water Conservation Commission provided monthly
pumping data for 16 production wells that screen the “1,500-foot” sand. In this study, we
developed a two-dimensional groundwater model using MODFLOW-2000 [Harbaugh et al.,
2000]. The time-varied constant head boundary condition was used.

(3) Development of Three Groundwater Models and Seven Parameterization Methods
There is no direct information about the Baton Rouge Fault permeability that affects
groundwater heads significantly. We adopted the Horizontal Flow Barrier [Hsiech and Freckleton,
1994] to estimate the fault hydraulic characteristic (HC), the hydraulic conductivity per unit
width of fault. Using the observation data at EB-917 (north of the fault) and EB-780A (south of
the fault), we estimated the hydraulic characteristic (HC) of the Baton Rouge Fault to be
0.000519 day™, which indicates a leaky fault with low permeability. For the comparing purpose,
we built two additional groundwater models based on two extreme cases of the fault
permeability. One is the impermeable-fault model, where the fault is impermeable. The other
model is the no-fault model, where the fault is not considered in the model. Therefore, three
groundwater models are:



(1) Leaky-fault model (M,)
(2) Impermeable-fault model (M)
(3) No-fault model ( M,)

To estimate the hydraulic conductivity in the study area, we used the electrical resistivity data
from the 21 electrical resistivity wells obtained from Louisiana Water Science Center. Using
Archie’s law, we interpreted the resistivity reading into porosity. Then, we applied 7 grain-size
empirical methods to calculate hydraulic conductivity at the E-log sites. The seven methods are
listed in Table 1 [Kasenow, 2002].

Table 1. Seven grain-size methods to calculate the K value under the general expression of
empirical formula, K = b(g/v) f(n)d’, where g=9.8m/s’, d, =0.22mm, and the water

kinematic viscosity, v=28.007x107"m’ /s at 30°C.

Grain-size method b Function of porosity f(n) Domain of applicability
3
Kozeny-Carman 1/180 (111—)2 Fine to large grain sands
-n
3
Sauerbrei 3.75x107° (ln—)z Sand and sandy clay
-n
Slichter 0.01 Y Fine to large grain sands
2
n—0.13
Terzaghi 6.1x107 ( Large-grain sands
Jl—=n
3
Kruger 435x107° (ln—n)z Medium-grain sands
Zunker 1.2x107° (lij Fine and medium-grain sands
-n
n3
Zamarin 8.2x107° (1) (1.275-1.5n)° Large-grain sands
—n

Once the hydraulic conductivity values are determined by the grain-size methods at the E-log
locations, we use the generalized parameterization (GP) method [Tsai, 2006] to estimate the
spatially correlated log-hydraulic conductivity (7w =In K ). The GP method in this study
combines the ordinary kriging (OK) and Voronoi tessellation (VT), a zonation method.
Therefore, seven GP methods are considered and denoted as (1) GP-Kozeny-Carman (6,), (2)

GP-Sauerbrei (6,), (3) GP-Slichter (8, ), (4) GP-Terzaghi (6,), (5§) GP-Kruger ( 6;), (6) GP-
Zunker (6;), and (7) GP-Zamarin (6, ).

Principal Findings and Significance

(1) Estimation of Model Weights and Method Weights

The model weights and method weights play a very important role in the BMMMP because they
represent the model and method importance. Using the BIC to calculate model weights in the



BMA reveals the model selection result using Occams’ window [Raftery, 1995]. Occam’s
window determines if the model would be selected based on the log posterior ratio of the
considered model against the best model. The problem of using Occam’s window is the too
narrow window size, which easily rejects good models. We developed a variance window, which
defines the window size to accept models based on the variance of the error chi-squares [Tsai and
Li, 2007]. In this study, we use a 5% significance level in Occam’s window and two times of the
standard deviation of chi-squares as the window size. The scaling factor is 0.0798.

Table 2 lists the weights of the seven GP methods in each groundwater model. The GP-Kozeny-
Carman method is the best GP method in the leaky-fault model and impermeable-fault model
while the GP-Sauerbrei method is the second best method. However, the GP-Slichter method is
the single best method when the no-fault model is used.

Table 2. Posterior probabilities of GP methods (method weights) in groundwater models.

Posterior Method Posterior Method Posterior Method
GP Methods Probabilities in Probabilities in Probabilities in No-

Leaky-Fault Model Impermeable-Fault  Fault Model

Model

GP-Kozeny-Carman  57.01% 73.48% 0.00%
GP-Sauerbrei 29.31% 23.40% 0.00%
GP-Slichter 0.00% 0.00% 100%
GP-Terzaghi 0.00% 0.00% 0.00%
GP-Kruger 6.29% 1.61% 0.00%
GP-Zunker 7.38% 1.51% 0.00%
GP-Zamarin 0.00% 0.00% 0.00%

Table 3 lists the model weights for three groundwater models. The leaky-fault model is the best
model with a weight of 67.01%. The impermeable-fault model gains about one third of the total
weight. The no-fault model is rejected.

Table 3. Posterior probabilities of groundwater models (model weights).

Leaky-Fault Impermeable-
Model Fault Model No-Fault Model
Posterior Model . . .
Probabilities 67.01% 32.99% 0.00%

Figure 2(a) shows that the BMMMP is able to fit well the head observations at EB-168, which
are bounded by the one-standard deviation bounds of the BMMMP. Figure 2(b) demonstrates
that the leaky-fault model and impermeable-fault model are good models. The no-fault model is
unacceptable.
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Figure 2: Comparisons to the observed groundwater heads at observation well EB-168 (a)
BMMMP against individual GP methods using the leaky-fault model, and (b) BMMMP against
individual groundwater models.

(2) Head Predictions Using BMMMP

We predicted the groundwater head on January 1, 2020 by using the monthly averaged pumping
rate and head boundary conditions in the three years (2002-2004). In Figure 3, we compared the
head predictions on January 1, 2020 using the best GP method (GP-Kozeny-Carman) in the
leaky-fault model against that using the BMMMP. Because the GP-Kozeny-Carman has more
than 50% of the total weight, the BMMMP and the best single model result in similar predicted
groundwater heads.

91°10° 91°05” 91°00”

|

30°30° |-
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Amite River

Predicted heads using GP-Kozeny-Carman
in the leaky-fault model

Figure 3: Predicted groundwater heads on January 1, 2020.

The variances of head predictions on January 1, 2020 using the BMMMP is shown in Figure 4,
which include the within-method variances, between-method variances, between-model
variances, and total variances. The large head prediction variances come from the GP methods.
The between-method variances are small because the GP-Kozeny-Carman dominates in both
leaky-fault model and impermeable-fault model. The between-model variances are slightly
higher than the between-method variances. The head prediction variances increase toward the
middle-east area near the fault due to less hydraulic conductivity samples and fewer head



observations in this area. More K measurements and head observations can significantly reduce
the prediction uncertainty in this area.

Amite River
Amite River

Amite River

Amite River

Figure 4: Head prediction variances.

In conclusion, the BMMMP scheme provides a rigorous approach to estimate the head
predictions and to evaluate prediction uncertainty by incorporating multiple groundwater models
and multiple parameterization methods. This approach can avoid overconfidence in using a
single method and a single simulation model and gain more trust in the predicted results.
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