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Problem and Research Objectives

The Baton Rouge aquifer system located at south central Louisiana is a major source of
drinking and industrial water. The aquifer has a fault running east-west located at the southern
part near the coastline of the region. The fault cuts the aquifer system into two parts: the up-
thrown north side and the down-thrown south side. The fault was considered to act as an
impermeable barrier to groundwater movement across it. A recent study suggests the Baton
Rouge Fault as a conduit-barrier fault (Bense and Person 2006). Predominantly, the region south
of the aquifer contains saltwater and north of the aquifer contains fresh water. However, by 1990,
the water quality data at the existing wells to the north of the fault indicated that increasing water
withdrawn in the region was resulting in saltwater intrusion to the north and a decrease in water
quality within the aquifer system (Tomaszewski 1996). The sources of the saltwater are nearby
the St. Gabriel salt dome and Darrow salt dome (Bray and Hanor 1990). The project focuses on
mitigating saltwater intrusion in the “1,500-foot” sand aquifer.
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Figure 1: The study area of the “1,500-foot” sand ' ' '
aquifer in the Baton Rouge area, Louisiana. The Modeling Area
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The objective of the study is to develop a management model using an injection-
extraction approach to protect the production wells from saltwater intrusion. The idea has been
actually implemented for hydraulic control to the West Coast Basin of coastal Los Angeles,
California (Reichard and Johnson 2005) and was considered in Spain (Abarca et al. 2006). This
study considers the joint operations of the hydraulic barrier system and the extraction system
shown in Figure 1 to (i) intercept the incoming saltwater plume toward the production wells and
(i1) reduce brackish water north of the fault. The injection wells align to form a hydraulic barrier
to reduce saltwater movement towards the production wells. The pumping wells are placed at the
pathway of the brackish water in order to remove the brackish water from the aquifer and prevent
northward movement of the brackish water pushed by the hydraulic barrier system. The locations
of these well pumps are fixed in this study.

Methodology
(1) Genetic Algorithm for Injection-Extraction Management Model

The overriding objective of the management model is to minimize the total amount of
injected and extracted water as follows

min Zzzl{eﬂ RAt” + ZzzianAt” , (1)
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The range of injection and extraction rates is constrained by
0<q" <qp,
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where ¢® and ¢” are the injection rate and the extraction rate, respectively. ¢~ and ¢’ are

2)

the maximum injection rate and extraction rate, respectively. z, and zf , are the scheduling

binary variables for spatial and temporal allocation of the pump rates at injection site i, pumping
site j, at time period n. At is the time interval for the period n. To reduce operation
complexity, this study searches for optimal constant injection rate and constant extraction rate
and optimal operation schedule to determine well pump activities.

The concentration at the Lula Avenue pumping center (see Lula wells in Figure 1) is
constrained by the maximum permissible level (MPL):
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where C is the predicted concentration by the simulation models, C*" is the maximum

permissible level (MPL) of concentration, x,,,, is the location of Lula wells, 7, is the starting

time of remediation horizon, and ¢, is the ending time of the remediation horizon. The
concentration in the remediation area is also constrained by the MPL:

C(xeQR,t=ZT;zfn,qR,z;n,qP)SCMPL, 4)
where Q, is the domain of remediation area (see Figure 1). The joint operations of hydraulic

barrier and extraction systems present a mixed integer nonlinear programming (MINLP)
problem, which involves the ground water model and transport model. This study employs a
genetic algorithm (GA) with binary chromosomes to search for optimal pump rates as well as
optimal binary values of scheduling variables. Using the GA, the constraints are moved as the
penalty terms to the objective function. Then, a multiobjective function is formulated:
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where w;, w,, w, are the weights to reflect the priorities, which in this study are in order of

minimizing the concentration violation at Lula wells, minimizing the concentration violation in
the remediation area, and minimizing the total amount of water injected and extracted.

(2) Concentration Prediction using Bayesian Model Averaging under Uncertainty of Head
Boundary Values and Variograms for Hydraulic Conductivity

The optimized joint operations are subject to the uncertainty of model structure that can
cause large constraint violations. To assess the robustness of the optimized operations, this study
introduces the Bayesian model averaging (BMA) (Hoeting et al. 1999) to obtain the predicted
concentrations to evaluate the violations at Lula wells and in the remediation area.

Let M= {M(”); p=1, 2,...} be a set of saltwater intrusion simulation models based on

different boundary values of ground water heads. Each simulation model may have different
variogram models to estimate hydraulic conductivity, which is denoted as 0 = {Off );q =1, 2,...}.

Given data D, the expectation and covariance of chloride concentrations using multiple models
can be obtained as follows:

E(C|D)= ZquE(C | M‘p),eff),D)Pr(e‘qp) |M("),D)Pr(M‘”) |D), (6)
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where  E,E, |:COV|:C|M('”),9;N,D:|:| is the within-covariance of concentration,
E,,Cov, [E[C|M(p ),6;” ) ,Dﬂ is the covariance of concentration due to different variogram
models in simulation models, and Cov,E, [E[C|M(p),6;’7 ) ,Dﬂ is the covariance of
concentration due to different simulation models. Pr(M(p ) |D) is the posterior probability of

simulation model p and Pr(O;") |M("),D) is the posterior probability of variogram model ¢
used in simulation model p .

The likelihood Value,Pr(DlM("),Gg”)), is needed in order to calculate the posterior
model probabilities and is approximated using the Bayesian information criterion (BIC) (Raftery

1995; Madigan et al. 1996): Pr(D | M(”),G(q’”) & exp(—%BICfl”)) , where the BIC is
BIC!” ==2InPr(D|M”,00,B," ) +m" InL. )



where B! is the maximum-likelihood estimated unknown parameters, m.” is the dimension of

ﬁff ) and L is the size of the data D . In this study, [if]p ) refers to the data weighting coefficients

in the GP methods used to estimate hydraulic conductivity (Tsai 2006).
Therefore, one can assess the constraint violations by using the BMA expectation for
concentration prediction as follows
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This optimization problem is very time-consuming because it involves many simulation
models and variogram models in the management model.

(10)

Principal Findings and Significance
(1) Model Uncertainty

To assess the robustness of the optimized joint operations under this uncertainty, five
groundwater flow models are created, which have 0%, +10%, and +20% changes of the
predetermined head boundary values over the entire boundary. Moreover, the uncertainty in
experimental variograms for hydraulic conductivity is also considered. Three variogram models
(exponential (EXP), spherical (SPH) and Gaussian (Gau) models) are used. A total of 15
simulation models are developed. Detail information can be found in Tsai (2010).
(2) No-Action Scenario

Without the hydraulic barrier and extraction systems (no-action scenario), the chloride
concentration is slowly moving northward toward the Lula wells. The concentration distributions
predicted by the best model (Gau+0%) and the BMA are similar. Both confirm that the 2.5%
isochlor does not reach the Lula wells within the management period. The variances of the
predicted chloride concentrations due to different variogram models in individual simulation
models are much smaller than the variances due to different simulation models. Given the similar
weights of the variogram models in the best and second best simulation models, this indicates
similar concentration predictions made by different variogram models within a simulation model.
However, different simulation models due to head boundary uncertainty exhibit relatively large
differences in concentration predictions.
(3) Joint Operations with Well Pumps Active All Time

By considering the well pumps of the hydraulic barrier and extraction systems active all
the time, the injection rates and extraction rates are increased systematically from the no-action
scenario to illustrate the impact of the systems on the saltwater intrusion. A viable remedial
action is defined for the case where the sum of violations (the second term in Eq. (5)) at the Lula
wells is zero during the management period. Otherwise, the remedial action is not acceptable.
For example, the no-action scenario is a viable scenario. A viable remediation scenario



represents the minimum requirement for an operation action because any actions that cause the
Lula wells to be contaminated are not acceptable. Moreover, optimized operations would become
very expensive if one was restricted to zero violation in the remediation area at the end of the
management period. This study relaxes this restriction for practical purposes and considers a
remedial action acceptable with a violation of less than 0.001 for the third term in Eq. (5). The
threshold for this small acceptable violation is subjective and depends on decision makers.

Figure 2 shows the matrix of scenarios without violation (open circles) and with violation
(filled circles) at Lula wells, created by enumerating the combinations of different injection rates
and extraction rates using the best model (Gaut+0) and the BMA. The injection and extraction
rates are operated full time for 15 years. The total amount of pumped and injected water in
million cubic meters (MCM) is plotted in Figure 2, which is the potential (maximum) amount of
water the systems need to deal with. For example, an injection rate of 3250 m’/day and
extraction rate of 2750 m’/day operate a potential amount of water of 537 MCM. Figure 2 also
shows the contour lines of the sum of violations in the remediation area at the end of the 15-year
management period. Based on the information in Figure 2, one can draw the following
observations: (1) Actions with low injection rates with low extraction rates are unacceptable
because they cannot cleanup the remediation area even though they are viable actions to the Lula
wells. (2) High injection rates with low extraction rates are unacceptable because the hydraulic
barrier system pushes northward and end up brackish water in the Lula wells. This can result in
zero violation in the remediation area at the end of the management period. (3) Low injection
rates with high extraction rates are generally not acceptable remedial actions. While no violation
occurs in the Lula wells, the extraction system enlarges and deepens the depression core, induces
more saltwater intrusion northward, and causes high violations in the remediation area. (4) Using
higher injection rates and higher extraction rates is likely to achieve the goal of cleaning the
brackish water in the remediation area without jeopardizing the Lula wells.

Figure 2: Matrix of actions with different injection and extraction rates using (a) the best model and (b) the
BMA with the variance window. Open circle represents a viable action. Filled circle represents an unacceptable
action. Solid line represents the sum of violations in the remediation area. The dotted-dashed line represents the
total amount water injected and pumped in million cubic meters (MCM).
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(4) Joint Operation Optimization

To reduce the complexity of the management model and increase the efficiency of
searching for the optimal operation, the operation considers all injection wells and all pumping
wells are active or inactive on a monthly basis for 15 years. Therefore, there are 180 scheduling
variables for the injection wells and 180 scheduling variables for the pumping wells. A micro-
GA solver (Carroll 1996) is used to minimize the objective function. The population in the
micro-GA is five, the uniform crossover probability is 0.5, and the mutation probability is 0.02.
The tournament selection strategy is used. The maximum number of generations for each GA run
is 200. These GA parameters are suggested in the solver (Carroll 1996). The maximum injection

rate (¢* ) and extraction rate (¢”, ) in the GA are set to 4,000 m’/day . The injection rate and
extraction rate are given the same length of 12 bits in the binary chromosomes. To prioritize the
multiple objections, it sets w, =107"", w, =100, w, =1.0 for the objective function. The length

of a binary chromosome is 384 bits. To obtain the fitness of each chromosome (one possible
operation solution), the 12 simulation models are executed together to calculate the BMA
concentrations. The computation is extremely extensive.

Again, the author recognizes the possibility of considering individual operations of the
well pumps on the monthly basis. This will reduce operation costs by increasing flexibility in
well operations in the management model. However, this will result in 3,600 scheduling
variables for the injection wells and 2,160 scheduling variables for the pumping wells. This
complicated optimization problem is avoided in this study.

Two management models are compared to show the difference if model uncertainty is not
considered. The first management model only considers the best model (Gau+0%). The second
management model uses the BMA to predict concentration based on the 12 simulation models.
Again, for the no-action scenario, two management models show no violation at Lula wells.
However, the sum of violations in the remediation area is very high. If considering the best
model only in the management model, the GA obtains the optimal injection rate to be 3,217

m’ / day and the optimal extraction rate to be 2,448 m3/ day . No violation occurs at the Lula

wells and in the remediation area at the end of the management period. The total amount of water
injected and pumped is 331 MCM. Comparing to the same injection and extraction rates in
Figure 2, the management model significantly reduces concentration violations and the amount
of water to deal with compared to pumping all wells all 15 years. Figure 3(a)-(c) shows the
chloride concentration predictions at 5-years, 10-years, and 15-years. However, if model
uncertainty is considered, one can test if the optimal operation from the best model is acceptable
by re-evaluating the sum of violations using the BMA concentrations. This optimal solution
produces noticeable violation in the remediation area at the end of the management period. The
violation can be seen in Figure 3(f) at the end of the 15 years based on the BMA prediction. The
violation is expected because the optimal operation from the best model neglects other good
models and gives a biased solution.

Using the BMA to predict chloride concentration in the management model, the GA

increases the optimal injection rate to 3,729 m’ / day and increases the optimal extraction rate to

3,012m’ / day in order to reduce the violations from other models. The increased injection and

extracting rates due to considering model uncertainty reflect the need of “overdesigning” the
strategy to insure reliability (Wagner and Gorelick 1987). The optimal operation using the BMA
presents an acceptable solution because no violation occurs at the Lula wells and the sum of
violations in the remediation area is less than 0.001. The total amount of water injected and



pumped is 371 MCM. The optimal operation using BMA is also tested if it is an acceptable
solution for the best model. After re-evaluating the sum of violations, the optimal operation using
the BMA also works for the best model. The variances of chloride concentration at the end of 15
years due to different variogram models in individual simulation models are much smaller than
the variances due to different simulation models.

Using the BMA prediction in the management model does not prevent other models from
violation. An exhaustive management model can consider the constraints that include
concentration predictions from individual models, but this would result in a very expensive
management policy in terms of the total amount of injected and pumped water in order to satisfy
all models. Moreover, this way would exaggerate the influence from insignificant models. With
BMA, one can avoid this problem while considering the model uncertainty.

Figure 3: Isochlors predicted by the best model (Gaut0%) at (a) 5 years, (b) 10 years, and (c) 15 years, and by the
BMA with the variance window at (d) 5 years, (e) 10 years, and (f) 15 years, given the optimal joint operation,
injection rate = 3,217 m*/day and extraction rate = 2,448 m’/day, from the best model.

Best model prediction

(a) 5 years
BMA prediction

(d) 5 years (e) 10 years (f) 15 years

Conclusions

[1] Groundwater management is far more difficult and complex because of model structure
uncertainty. Uncertain model structure often results in multiple possible simulation models.
Management plans under the consideration of a single simulation model tend to bias optimized
operations. To alleviate the biasedness, a reliable groundwater management model should take
into account the predictions from multiple simulations models.

[2] Bayesian model averaging (BMA) has been shown to be capable of integrating multiple
models for prediction in the management model. Optimized operations based on the BMA
predictions show more reliable management outcomes than those from one simulation model.
However, the optimized operation is more expensive in order to reduce constraint violations
elevated by considering many models.



[3] The study has demonstrated the importance of considering the model structure uncertainty in
a real-world case study. Using the best model underestimates the optimized injection rate and
extraction rate for the hydraulic barrier and extraction systems. Using the BMA prediction for
chloride concentration, the optimized injection and extraction rates increase to reduce the
concentration violation in the remediation area.

[4] The study also demonstrates the importance of using the variance window for uncertainty
analysis in the management model. Using Occam’s window literally accepts only the best model
and neglects model uncertainty. However, the incorporation of more simulation models in the
management model, as suggested by the variance window, could result in more expensive
operations in order to reduce additional constraint violations created by the additional simulation
models. A further investigation should be conducted to understand the impact of the size of the
variance window with respect to Occam’s window.
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