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Problem and Research Objectives

The water withdrawal in Baton Rouge, Louisiana is approximately 629,000 m’ per day (166
million gallons per day) out of which 88% is ground water and the rest is surface water (Sargent,
2007). Due to excessive ground water pumping, saltwater is intruding from the saline aquifers in
the south part of the Baton Rouge fault. Thus, in the absence of any remediation measure, some
of public supply water wells in East Baton Rouge Parish are under the threat of being abandoned
in the near future. The project objective is to analyze the uncertainty of the ground water
numerical models, which are used for the management and remediation of the ground water
resources.  The first step in this project is to develop conceptual models that capture the
complexity and heterogeneity of the subsurface geology

Subsurface models have a distinctive position since subsurface data are scarce due to economic
reasons. For example, this study area is approximately 1005 km®. To characterize the subsurface
55 resistivity and self-potential logs are used. Assuming that the radius of influence of the long
normal resistivity is 5 m and given a total number of 55 wells, thus the presence or absence of
sand lenses is sampled over an area of approximately 0.00043% of the total area. Since this could
be a common scenario for many subsurface problems, significant body of the subsurface
literature focuses on developing stochastic data analysis techniques that would improve the
utility of the scarce subsurface data and thus improve the model prediction and provide an
analysis of model uncertainty.

Thus, due to limited amount of data and since model uncertainty always exists, multiple models
are usually developed. Model selection, model elimination, model reduction, and model
discrimination are commonly used to select the best model. It is clear that modeling uncertainty
is always underestimated if only the best model is used. One would ask why only the best model
is used afterwards when so many efforts have been devoted to calibrating many models. This
certainly wastes valuable resources and important information from other good models.
Hierarchical Bayesian model averaging (HBMA) best utilize all possible models for model
prediction and application under Bayesian statistical framework. HBMA presents several
advantages over model selection: (1) Information from all possible models is used based on their



model importance (model weights). Calibration efforts are not wasted. (2) The model importance
is based on the evidence of data, which avoids over-confidence in the best model that does not
have a dominant model weight. And (3) model structure uncertainty is increased and is better
presented than that by using a single model. Moreover, HBMA is able to distinguish model
uncertainty arising from individual models and between models. HBMA is able to identify
unfavorable models even though they may present small prediction uncertainty.

In this study, HBMA is used to estimate the sand-clay distribution in the Baton Rouge aquifer
system. Indicator geostatistical techniques are used to analyze electrical resistivity logs and
reconstruct the subsurface accordingly. The HBMA is applied to analyze the conceptual model
structure uncertainty arising from the different sand-clay line cutoff values for the resistivity logs
and the different sand-clay cutoff probabilities for the interpolated values.

METHODOLOGY

Indicator Kriging

Given the volumetric domain D < R™, the indicator function {/(x,v) : x € D} is a random
function. The indicator random variable v describes the spatial extension of a categorical
variable €, which is the sand-clay distribution in aquifers under different sand-clay line cutoft &<
as determined from the electrical resistivity logs. The random function of the indicator random
variable of class C is defined as:

« 1 wEeE, v[x).‘;voc}
I(x,v) = {O v €C, v(x) < x
The indicator function I (x, %) is a random function of two variables in which ¥ is an outcome of
random variable at location x in which the one and zero indicates the presence of sand and clay,
respectively.

The indicator variogram has the same definition as the normal variogram except that the real
random function is replaced by the indicator random function I(x) as follows

N(R)
1

where N(h) is the number of pairs within the lag interval . In this case study, 55 observation
boreholes are used in which 42 are located north of the fault Baton Rouge fault and 13 wells are
located at the south. The main source of the sample data, which are used to generate the IK
variograms, is from the electrical resistivity logs that are provided by the Baton Rouge Water
Company. For each foot and for every resistivity log location, the resistivity values indicate
either sand or clay depending on the sand-clay line cutoff as determined from the clay line in the
resistivity curves. Another source of data is from the study of Wendeborn and Hanor (2008), in
which they analyzed spontaneous potential (SP) curves to identify the sand-clay distribution
along the Baton Rouge fault. The interpretation of these logs in terms of sand-clay sequences are
amended to the main data to provide more sampling locations. All observation points are



amended together through linear interpolation over each foot. The number of samples in each
observation point varies from 800 to 3000 depending on the depth of each borehole. Thus, over a
depth z with an increment of 1 foot, an experimental variogram is generated. A pseudo 3D
horizontal experimental variogram is obtained by averaging all the 2D experimental variograms
for all depths.

The exponential model fits well with the geological process understudy since it is an indicative
of a sharp transition occurring between blocks of different values (Rubin, 2003). The exponential
model is formulated as:

)
‘r'b_xp(h) =X, +X;- (1 — exp (*3 -XT))

where the correlation parameters are the nugget effect Xy and the sill X, , which the variance
approaches at an effective range 3. The theoretical variogram is fitted to the experimental
variogram automatically through using the pattern search method of Hooke and Jeeves (1961),
which performs a direct directional search for the values of Xy,X, and X 5, which would
minimize the weighted squared root difference between the experimental and the theoretical
variograms.

Under the basic assumption that the sample domain is stationary, ergodic and sufficient to
reliable reproduce the statistics, the obtained theoretical variogram is used for the indicator
kriging interpolation as a method for constructing the subsurface stratigraphy. The aim of kriging
is to estimate the value of a random variable at unsampled points. Over larger defined grid size,
which is 500 m X 500 m in this case, kriging uses weighted average of the neighboring sample
data points to estimate the value in each gird using the following equation:

AAd=b
such as
_7(x1>x1) 7(x17x2) 7(x|axN) 1__ﬂ’l_ _y(x],xo)_
7(x,x)  y(x,x,) - y(n,xy) 1|4 7(xy,%,)
7/(XN,)C1) 7(x1v’x2) 7/(xlvrx1v) 1 2‘1\/ 7/()6]\,,)60)
i 1 1 1 0__L_ i 1 |

in which 7(%;,%;) is the variogram of v between the data points X; and %; , and the v(%;,%,) is the
variogram between the data point X; and the target point X,. To guarantee that the estimates are
unbiased, the sum of the weights 4; is one. The unbiased constrained is imbedded to the
minimization problem through the use of the Lagrange multiplier L. By multiplying the inverse
of the matrix A with the vector b, we obtain the weight for each data point. The last step is to
calculate the expected value and the kriging variance by solving the following equations.
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The estimated values could be viewed as the conditional probability that a value is less than a
certain sand-clay cutoff.

Hierarchical Bayesian Model Averaging (HBMA)

To cope with sources of uncertainty in ground water conceptual models a hierarchical Bayesian
model averaging is adopted. An early study by Elshall and Tsai (2011) conducted a sensitivity
analysis on different methods and parameters. First, the use by of 2D variogram model for each
layer is compared to a pseudo 3D variogram model, which is a weighted average of all the 2D
variograms. Also, different sand-clay line cutoff and sand-clay cutoff probabilities are
investigated. The results are much more sensitive to the cutoff of the sand-clay line and sand-
clay cutoff probabilities in comparison with the selection of different variogram models. Four
sand-clay line cutoffs of 10, 11, 12 and 13 ohm-m are considered. For each of these four models
a sand-clay cutoff of probabilities 0.4, 0.5 and 0.6 is considered.

The key issue of HBMA is the determination of the posterior model probability. Given a number

of conceptual models M = {M®;p = 1..4} for determining the sand-clay distribution v over

the model domain with different cutoff probabilities ©% = {8?} g =1 ...3}, the posterior

probability of predicted sand-clay distribution is obtained by using the twelve conceptual models
through HBMA given a set of data D, which is the boreholes data from the USGS indicating the
sand lenses at different depths at 65 different locations. An HMBA method after Li and Tsai
(2009) is adopted in this study. In HBMA in which multi-parameter uncertainty is considered,
the posterior probability for the given data D , sand-clay line cutoff M and sand-clay cutoff

probability ©® is given as

Pr(v|D) = E,, [Eg [Pr M@, ef’},n)”
2 q '

where Pr(v|M{p]) 9?})0) is the posterior probability of the sand-clay distribution for a given

data set D and sand-clay line cutoff M () and sand-clay probability cutoff & ;pj. Eg and E,; are
the expectations. The joint posterior probability (model weight) according to the Bayes’ rule is:

q

%, %, P(D|M@®,6)

Pr(D|M'¢P3,9‘p})

Pr(6”,M®|D) = Pr(6F’|M®), D) Pr (M*|D) =

where Pr(gé'p}lM':p},D) is the marginal model likelihood function for a given sand-clay line
cutoff M® and sand-clay cutoff probability Qép}. The total weight is Pl"(f?ép“‘,MEp D) =1,
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The marginal likelihood function Pr(D|M '3’-',6:" ) is commonly approximated using the
Laplace approximation with the Bayesian information criterion (BIC)

@ _ 5, @) al® mzEN , (@)
BIC‘q = ZInPr(DlM ,Bq ,Bq )—|-mq Inn
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o () ) q
and M'¥/, mf’ is the number of the parameters B :" and n is the number of data D.

( (m) =m@)\ . . . . = .
P-r(D|M ) g ép},'B ‘p’} is the likelihood function value. The parameters B :’} are the variogram

q
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where B ‘;p} are the maximum likelihood estimated parameters in a model structure given &

model parameters in this study. One can obtain the means of the sand-clay distribution using the
law of total expectation:

E(v|D) = E,, [Eg [E’{v|M'ﬁPP,gézﬁJD)”
= Z Z E(v|M®,6{”,p)Pr(D|M*, D). Pr (M®|D)
B q

with variance matrix of the predicated sand-clay distribution as:

Var(v|D) = E,E, [Vaf [v|M':""j, 9;“”},0” + E,Varg [Va.r [U[ME""},BE},D”

+ VaryEg [[’ar [U|M(p},9‘§p},9”

The first term of the right side of the above equation is the within-model variance, which relates
to the uncertainty of the predicated sand-clay distribution using combination of different sand-

clay line cutoff M ) and sand-clay cutoff probability 9;:-;:}' The second term is the between-

model variance, which relates to the uncertainty using different sand-clay probability cutoffs.
The third term is between-model variance, which relates to the uncertainty of using different
sand-clay line cutoffs.
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Figure 1. BMA tree of model weights in HMBA. The model weights in parentheses
are Pr (QQP},M )| D). The model weights without parentheses are Pr (9;” |M‘® },D).



Principal Findings and Significance

This section presents the results of studying the sand-clay distribution based on different sand-
clay lines of 10, 11, 12 and 13 ohm-m and sand-clay cutoff probability of 0.4, 0.5 and 0.6. Model
weights are calculated according to the BIC, which is more skewed to the best models as shown
in Figure 1.

The models for different probability values are the third level models, which are 12 models
corresponding to the three cutoff probabilities for each for the four sand-clay line cutoffs. When
the third level models are averaged with their weights, they form the second level models, which
are 4 models corresponding to the four different sand-clay lines as shown in Figure 2. Although
the weights are calculated based on the results of 190 layers from a depth of 1460 to 1650 feet
below msl, the results are only shown for a 2D plan at a depth of 1551 feet below msl.
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Figure 2. Sand-clay distribution for the second level models for different sand-clay line cutoffs.

The BMA prediction variance includes the within-model variance and between-model variance
with the total variance being the summation of these two components. Although the calculated
sand-clay distribution can be significantly different when using different sand-clay lines and
cutoff probabilities, yet the within-model variance is larger than the between-model variance.
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Figure 3. Within-model variance (WMV) and between-model variance (BMV) for different

sand-clay line cutoffs.
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Similarly, one can obtain the first level model, which is a weighted average of the second level
models as shown in Figure 4. For the between-model variance being smaller than the within-
model variance does not suggest the unimportance of the sand-clay line. Rather it simply
suggests that good models produce similar predictions close to the expectation of the BMA
predictions. Bad models have little influence on the sand-clay distribution because their model
weight is very small and thus their predictions are further apart from the BMA prediction.
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Figure 4. Sand-clay distribution, within-model variance, between-model variance and total
variance for the first level model.

CONCLUSION

This study focuses on model structure uncertainty. Using a single model will ignore the
uncertainty arising from different model parameters. The HBMA applies a Bayesian statistical
approach to quantify the overall sand-clay distribution uncertainty. In general, HBMA is
successfully applied to study the uncertainty of stratigraphic models. Accordingly, the method
can be readily extended to include other sources of structural uncertainty such as the morphology
and dipping angle of Baton Rouge fault and borehole elevation uncertainty.
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