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Problem and Research Objectives

Water use in Baton Rouge, Louisiana is approximately 171.41 million gallons per day out of
which 87.4% is ground water and the rest is surface water (Sargent, 2012). Population served by
public supply is 436,650. Due to excessive ground water pumping, saltwater is intruding from
the saline aquifers in the south part of the Baton Rouge Fault. Thus, in the absence of any
remediation measure, some of public supply water wells in East Baton Rouge Parish are under
the threat of being abandoned in the near future. The project objective is to develop saltwater
intrusion models to be employed for the management and remediation of the ground water
resources for the study area shown in Figure 1. The study area is approximately 500 km®.
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Figure 1: The map of the study area. Circles are pumping wells. White triangles are USGS water
wells. All wells in the map were screened at the “1,500-foot” sand.

Due to limited amount of data and since model uncertainty always exists, multiple models are
usually developed. Model selection, model elimination, model reduction, and model
discrimination are commonly used to select the best model. It is clear that modeling uncertainty
is always underestimated if only the best model is used. One would ask why only the best model
is used afterwards when so many efforts have been devoted to calibrating many models. This
certainly wastes valuable resources and important information from other good models.
Hierarchical Bayesian model averaging (HBMA) (Chitsazan and Tsai, 2012; Tsai and Elshall,
2013) best utilize all possible models for model prediction and application under Bayesian
statistical framework. HBMA presents several advantages over model selection: (1) Information
from all possible models is used based on their model importance (model weights). Calibration
efforts are not wasted. (2) The model importance is based on the evidence of data, which avoids
over-confidence in the best model that does not have a dominant model weight. And (3) model
structure uncertainty is increased and is better presented than that by using a single model.
Moreover, HBMA is able to distinguish model uncertainty arising from individual models and



between models. HBMA is able to identify unfavorable models even though they may present
small prediction uncertainty.

In this study, the HBMA is used to predict chloride concentration and estimate prediction
uncertainty for the “1,500-foot” sand in the Baton Rouge aquifer system. The HBMA is applied
to analyze the conceptual model structure uncertainty arising from the different competing model
propositions for chloride concentration predictions at the USGS water quality wells.

Methodology

Hierarchical Bayesian Model Averaging (HBMA)

To cope with different sources of uncertainty in groundwater flow and mass transport models, a
hierarchical Bayesian model averaging is developed (Tsai and Elshall, 2013).

Consider M(j;_im) € Mpa model at level p. The subscript  (ij..lm) locates the model
hé_/ T

hierarchically top down from the first level, to the second level and so forth to reach to level p.

For example, M) € M; is model i at level 1, M5y € M is model j at level 2, which is a child

model to parent model i at level 1. M € M3 is model k at level 3, which is a child model to

the parent model j at level 2 and the grandparent model of model i at level 1. From bottom up,
parent models M,_; at level p—1 is composed of the child models M, at level p. Models M,_,
at level p—2 are composed of models M,_; at level p—1 and so forth until the Hierarch BMA

model M, is reached.

Consider base models at level p. According to the law of total probability, the posterior
probability for predicted quantity A given data D is

Pr(A|D)=E,E, L E, [Pr(A|D,Mp)], (1)
where Em, is the expectation operator with respect to models M, at level p. Pr(AlD, Mp) is the

posterior probability of predicted quantity A given dataD and models M, at level p. The
expectation Em,, [Pr(AlD, Mp)] is posterior probability averaging at level p. That is

Ey [Pr(A ID,M, )] = Y pr| A|D, M, ,E))Pr(M@LZIE) D, M%,)] : )
where Pr| A|D.M,, lm)) =Pr(A|D,M,).

24
Pr(M% ip) |D,MQ%3I)) = Pr(Mp | D, Mp_l) is the conditional posterior model probability of

model M. 1m) at level p under model M1y at level p—1. Plr(M10 | D, Mp_1) also represents the
P T

conditional model weights and will be used to develop a BMA tree of model weights. Note that

model M 1m) is a child model under the parent model M 1y because both have the same

subscript for the first p—1 levels. Equation (2) is the Bayesian model averaging (BMA) at

level p, which can be written as



Pr(A|D.M, )=E,, [Pr(A|D.M,)]. 3)

According to equations (1) and (3), one can derive the posterior probability of prediction using
BMA over models at any level, say level n:

Pr(A|D.M,)=E, E, L E, [Pr(A|D,Mp)]. (4)

Based on equation (4), the law of total expectation and the law of total variance, the prediction
mean, within-model variance, between model variance and total variance can be derived at level
n.

The hierarch BMA model is the usual BMA model (Hoeting et al., 1999), which is based on
equation (1). The hierarch model obtains model averaging results and prediction variances using
all base models.

In this study, A is the concentration and D is groundwater head and concentration data used to
calibrate groundwater flow and transport models.

Principal Findings and Significance

(1) Saltwater intrusion modeling in the “1,500-foot” sand of the Baton Rouge area

We develop a two-dimensional groundwater flow and mass transport model to predict the
saltwater intrusion in the “1,500-foot” sand of the Baton Rouge area. The study area, shown in
Figure 1, includes the east-west trending Baton Rouge fault (see Figure 1). The saltwater
intrusion model in this report is based on Tsai (2010, 2011). The simulation period is from
1/1/1990 to 12/31/2029 which is divided in calibration part from 1/1/1990 to 1/1/2005 and
prediction part from 1/1/2005 to 12/31/2029. The initial groundwater head and the initial
chloride concentration are obtained from Tsai (2011). The groundwater model uses the time-
varied constant boundary condition for all the boundaries. The mass transport model uses
constant concentration in the south boundary. The concentrations in the other boundaries are
calculated by the transport simulation model in each time step. The major production wells are
Lula pump station and Government Street pump station, which are located north of the Baton
Rouge fault. The average pumping rate from Lula pump station is 7.03 million gallons per day
and at Government Street pump station is 1.59 million gallons per day. We use MODFLOW
(Harbaugh, 2005) and MT3DMS (Zheng and Wang, 1999) to simulate the groundwater flow and
mass transport from 1/1/1990 to 12/31/2029. We use 706 head observations from 1/1/1990 to
1/1/2005 at the USGS observation wells shown in Figure 1 to calibrate the model. Then, we
develop the prediction models to predict salt water intrusion from 1/1/2005 to 12/31/2029.

(2) Sources of uncertainty and multiple models

We analyze four sources of uncertainty in a hierarchical order in the flow and transport models.
They are (1) boundary condition uncertainty, (2) grain-size method uncertainty in determining
point-wise hydraulic conductivity, (3) variogram model uncertainty in kriging hydraulic
conductivity distribution, and (4) fault permeability architecture uncertainty. To address these
sources of uncertainty, 5 boundary condition propositions, three grain-size methods (Kozeny-
Carman, Slitcher, and Terzaghi methods), three variogram models (exponential, Gaussian, and
spherical), and 3 fault permeability architectures are proposed. This results in 5x3x3x4 =180
saltwater intrusion simulation models at the base level of the BMA tree.



In order to track a model in the BMA tree, we use the letter “B” subscribed with percentage of
change of boundary head values in the determined boundary condition, the first letter of the
grain-size methods, the first letter of the variogram model and the number of fault permeability
segments in a hierarchical way to denote a model. For example “BoKG3” denotes a base model
in level 4 that consider no change in the determined boundary condition, Kozeny-Carman
method, the Gaussian variogram and three-segment fault permeability architecture. “BoKG” is a
BMA model at level 3 that averages base models with different fault permeability architectures
given “By” boundary condition, “K” grain-sized method and “G” variogram model propositions.
“BoK” is a BMA model at level 2 that averages level-3 BMA models with different grain-size
method propositions given “By” boundary condition proposition. “By” is a BMA model at level 1
that averages level-2 BMA models with different variogram model propositions given “Bg”
boundary condition and “K” grain-sized method propositions.

(3) BMA Tree of model weights

Figure 2 shows the BMA tree of model weights in parentheses and conditional model weights.
The model weights reflect the comparative importance of all the competitive modeling
propositions in one level. The conditional model weights represent the relative importance of the
different propositions under the same parent models. The base level of the BMA tree
corresponds to different fault permeability segments. The simulation models using homogeneous
fault permeability can be discarded because they provide very poor fitting to the observation data
and are not shown in the BMA tree.

At the base level, the best base model is B)KG3 with the model weight 20.41%. At the third
level, the BMA models are developed by averaging concentration predictions from their child
base models that use different fault permeability architectures. The “B¢KG” is the best model
with model weight 38.93% the second best model is the “BoKS” with model weight 28.75%. The
relative model weights show that the ranking of the variogram models is the same under both
“BoK” and “B110K” models. The Gaussian model is a better proposition than the spherical and
exponential models to determine the hydraulic conductivity distribution.

At the second level, BMA models are developed by averaging concentration predictions from
their child BMA models that use different variogram models for hydraulic conductivity
estimation. As shown in Figure 2, since Terzaghi and Slitcher methods have significantly worse
fit to the observation data, only Kozeny-Carman method are remained at the second level. The
“BoK” model weight is 78.64% and the “B+10K” model weight is 21.36%. Their conditional
model weights are 100% under their parent model.

At the first level, BMA models are developed by averaging concentration predictions by their
child BMA models that use different grain-size methods. However, from previous analysis, we
found that only Kozeny-Carman method was left to be used. At this level the determined
boundary condition (By) is dominantly the best model with the model weight 78.64% and By is
the second best model with model weight 21.36%. Other boundary condition propositions are
discarded because of poor fitting to the observation data.



Hierarch

100.00 - - -  Conditional model weight Model
(100.00) - - - - - - Model weight proposition
I I I | | .-
oundary
B, B, B, B.1o Bio o conditions
° . 78.64 21.36 .
(78.64) (21.36)
S K T S K T e e e e Grain-size
e 100.00 o o 100.00 methods
(78.64) (21.36)
|
I I I I I Hydraulic
E G S E G S .+ . . conductivity
21.74 49.51 28.75 17.31 58.74 23.95 variogram
(17.09) (38.93) (22.61) (3.69) (12.54) (5.14) models
I I . I | I | I I | I I |
2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 Iz I I .. Fault
53.67 4633 . 5043 4757 - 5249 4751 3230 3562 3208 3339 34890 3172 3315 3510 31.75 permeability
9.17) (7.92) (20.41) (18.52) (11.87) (10.74)  (1.19) (1.32) (L.18) (4.18) (4.37) (3.99) (1.70) (1.81) (1.63) models

Figure 2: BMA tree of model weights and conditional model weghits.

(4) BMA tree of mean concentration predictions

The BMA tree of mean concentration predictions for the EB-658 and the EB-917 on 12/31/2029
is shown in Figure 3. The predicted mean concentration at EB-658 at the base level is between
481.76 mg/L and 1110.91 mg/L and. The predicted mean concentration at EB-917 at the base
level is between 3816.20 mg/L and 4747.73 mg/L. The mean concentration prediction range
becomes narrower while going up to upper layers because of the nature of averaging and the
reduction in the number of models. At the level 3 the mean concentration range at EB-658 is
between 527.29 mg/L and 926.38 mg/L and the mean concentration range at EB-917 is between
3995.03 mg/L and 4495.88 mg/L. At the level 2 and level 3, the concentration prediction range
for EB-658 is between 594.90 mg/L and 835.68 mg/L and for EB-917 is between 4181 mg/L and
4436.23 mg/L. The hierarch BMA model predicts mean concentration at EB-658 and EB-917 is
646.33 mg/L and 4236.04 mg/L. It was found that all of the models with 3-segment fault
proposition predict higher mean concentration at EB-917 than the models with 2-segment or 4-
segment fault proposition.

The BMA tree of mean predictions shown in Figure 3 provides an understanding of mean
prediction variability over the accumulation of sources of uncertainty, which is not possible to
know via the traditional BMA method.
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Figure 3: BMA tree of mean concentration predictions (mg/L) at the EB-658 and EB-917 at
the 12/31/2029.

(5) Temporal predictions and variances

Figure 4 shows the EB-917 concentration predictions and the one standard deviation bound using
models at the different levels for the prediction period. All of the models predict the increasing
concentration at EB-917. As shown in Figure 4, none of the USGS chloride data is inside the one
standard deviation bound of the BoKG3 base model and BoKG model. Two chloride data are in
one standard deviation bound of the BoK and By models and all chloride data are in the one
standard deviation bound of the hierarch model.

According to Figure 4, it is clear to see that prediction variance caused by uncertain model
parameters is much smaller than that caused by different model propositions. Moreover, the
prediction variances at all levels start to increase at the beginning of time and then decrease. This
behavior is reasonable because at early time all models predict similar low concentration at EB-
917. Therefore the prediction variances are small. High prediction variances occur due to
predicting concentration quite differently by different models. At later time all models start to
predict similar high concentration at EB-917. Therefore, prediction variance decreases. The
hierarch model has much higher prediction variance comparing to the By model is because it
includes high prediction variance from the B+ model.
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One standard deviation error bound of predicted concentration at EB-917 from

1/1/2005 to 12/31/2029. Crosses are USGS chloride data.

Figure 4
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